长江科学院院报 ›› 2014, Vol. 31 ›› Issue (4): 31-34.DOI: 10.3969/j.issn.1001-5485.2014.04.0072014, 31(04):31-34

• 工程安全与灾害防治 • 上一篇    下一篇

多元非平稳时间序列分析的滑坡变形预测研究

李飞翱, 罗文强, 刘小珊, 黄 丽   

  1. 中国地质大学 数学与物理学院, 武汉 430074
  • 收稿日期:2013-03-08 修回日期:2014-04-04 出版日期:2014-04-01 发布日期:2014-04-04
  • 作者简介:李飞翱(1987-), 男, 湖北十堰人, 硕士研究生, 主要从事工程概率及地质灾害预测方面的研究工作, (电话)15907116374(电子信箱)cuglifeiao@163.com。
  • 基金资助:
    国家重点基础研究发展计划(973)项目(2011CB710605)

Landslide Deformation Prediction by Analysis ofMultivariate Non-stationary Time Series

LI Fei-ao, LUO Wen-qiang, LIU Xiao-shan, HUANG Li   

  1. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
  • Received:2013-03-08 Revised:2014-04-04 Published:2014-04-01 Online:2014-04-04

摘要: 目前滑坡变形预测的时间序列模型为单变量模型, 仅考虑时间-位移关系, 未能考虑诱发因素对滑坡位移的影响, 因此, 建立多变量的时间序列模型十分必要。应用多元非平稳时间序列分析方法, 建立了滑坡变形趋势的误差修正模型(ECM), 实现了滑坡诱发因素和位移动态变化的综合分析。以三峡库区秭归县白水河滑坡为例, 取监测点ZG93为代表, 建立了基于多元时间序列分析的误差修正预测模型, 并计算预测误差, 结果显示, 除个别数据点之外, 预测误差均在±2.3%以内。

关键词: 滑坡, 多元非平稳时间序列, ECM, 变形预测

Abstract: At present, time series model for landslide deformation prediction has been univariate model which failed to take the inducing factors of landslide displacement into account. To establish multivariate time series model is necessary. An error correction model (ECM) for landslide deformation trend prediction was established by using multivariate non-stationary time series to comprehensively analyze the landslide’s inducing factors and dynamic displacement changes. The monitoring point ZG93 of Baishuihe landslide in Three Gorges Reservoir area was taken as an example to calculate the prediction errors. Results showed that except for several points, the prediction errors are all controlled in the range of ±2.3%.

Key words: landslide, multivariate non-stationary time series, ECM, deformation prediction

中图分类号: